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Abstract

We examine the relationship between the numerical range of the
restriction of a generalized derivation to a norm ideal J and that of its
implementing elements.
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1 Introduction

Given a Banach algebra A , A ∗ the dual of A , S(A ) = {x ∈ A : ‖x‖ = 1},
the unit sphere, and x ∈ S(A ), let D(x,A ) = {f ∈ A ∗ : f(x) = 1 = ‖f‖}.
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The Hahn-Banach theorem guarantees that D(x,A ) is non empty for each
x ∈ S(A ). The elements of D(I,A ), I, the identity in A , are called normalized
states or simply states.
For a ∈ A , and x ∈ S(A ), we define V (x, a,A ) = {f(ax) : f ∈ D(x,A )} .
The numerical range of a is the set V (a,A ) =

⋃
{V (x, a,A ) : x ∈ S(A )}.

Given a Banach space H ,we may consider the Banach algebra A = L(H )
and define define the spatial numerical range of A by
W (A;L(H )) = {f(Ax) : f ∈H ∗, x ∈H , and ‖f‖ = ‖x‖ = 1 = f(x)}
We first give some basic properties of the numerical range .
Bonsal [4], has shown that V (a,A ) = V (I, a,A ) , and for each a ∈ A , V (a,A )
is a compact convex subset of C.

Lemma 1. V (x, a,A ) = {f(ax) : f ∈ D(x,A )} is convex.

Proof. Let λ1, λ2 ∈ V (x, a,A ). Then there exist support functionals f1, f2 ∈
D(x,A ) such that λ1 = f1(ax) ,λ2 = f2(ax) .
Define f on D(x,A ) by f(ax) = tf1(ax)+(1− t)f2(ax), t ∈ (0, 1). We need to
show thatf ∈ D(I,A ) Clearly f is linear and |f(ax)| = |tf1(ax) + (1− t)f2(ax)| ≤
t |f1(ax)|+(1−t) |f2(ax)| ≤ t ‖f1‖ ‖ax‖+(1−t) ‖f2‖ ‖ax‖ = ‖ax‖ ⇒ ‖f‖ ≤ 1.
Also, f(x) = tf1(x) + (1− t)f2(x) = 1
⇒ ‖f‖ ≥ 1
Thus f ∈ D(I,A ) which is convex and hence V (x, a,A ) is convex.

For a ∈ A , we define the left multiplication operator La : A → A by
La(x) = ax,∀x ∈ A and ‖La‖ = sup {‖ax‖ : x ∈ A , ‖x‖ ≤ 1}
La is a linear operator in A and also a bounded operator since
‖La‖ = sup {‖ax‖ : x ∈ A , ‖x‖ ≤ 1} ≤ ‖a‖.
La(A ) will denote the set of all left multiplication operators on the algebra A
as a ranges on A .This set is a normed algebra.

The algebraic numerical range of La ∈ La(A ) is the non-empty set:
V (La;La(A )) = {f(La); f ∈ La(A )∗, f(Le) = 1 = ‖f‖}.
Similarly the right multiplication operator for b ∈ A is defined as ;
Rb : A → A , x→ xb
We note that ∀x ∈ A and fixed a, b ∈ A , ∆a,b(x) = La(x)−Rb(x) = ax− xb,
is the generalized derivation induced by a, b ∈ A .
In [3], it is shown that for any Banach algebra A , ‖La‖ = ‖a‖ = ‖Ra‖ and that
V (a; A ) = V (La;L(A )) = V (Ra;L(A )), L(A ) the algebra of the bounded
linear operators on A .

Lemma 2. For a ∈ A , La ∈ La(A ), ‖La‖ = ‖a‖ = ‖Ra‖
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Proof.

‖La‖ = sup {‖La(x)‖ : ‖x‖ = 1}
= sup {‖ax‖ : ‖x‖ = 1}
≤ ‖a‖ ‖x‖
⇒ ‖La‖ ≤ ‖a‖ ........................(i)

If A has unit e, we have La(e) = ae = a which implies ‖a‖ = ‖La(e)‖ ≤
‖La‖ ‖e‖ = ‖La‖ ⇒ ‖La‖ ≥ ‖a‖ ......................(ii)
From (i) and (ii) equality follows.
Similarly we obtain ‖Ra‖ = ‖a‖.

Lemma 3. For a ∈ A , V (a; A ) = V (La;L(A )) = V (Ra;L(A ))

Proof. Let λ ∈ V (a : A ), Then there exist f ∈ S(A ) such that f(a) = λ
Now define F on L(A ) by
F (La) = f(ax), for all La ∈ L(A ).
Clearly F is linear since

F (αLa + βLb) =f (αax+ βbx)

=f(αax) + f(βbx)

=αf(ax) + βf(bx)

=αF (La) + βF (Lb), a, b ∈ A , α, β ∈ C

f is also bounded and positive since
‖F (La)‖ = sup {‖f(ax)‖} ≤ ‖f‖ ‖ax‖ = c ‖La‖.
Also F (Le) = f(ex) = f(x) = 1 and ‖F‖ = 1 .
So F as defined is a positive linear functional on A .
Take a finite rank operator b ∈ L(A ) defined by
bx = g(x)a, for all x ∈ A , g ∈ S(A ). Clearly ‖b‖ = 1 and F (b) = f(bx) =
f(g(x)a) = g(x)f(a) = λ. Hence V (a; A ) ⊆ V (La;L(A ))
Conversely we show that V (La;L(A )) ⊆ V (a; A )
Let λ ∈ V (La;L(A )). Then there exists a state f ∈ L(A )∗ such that f(La) =
λ
Define a functional h ∈ A ∗ by h(a) = f(La). Then :

h (αa+ βb) =f (αLa + βLb)

=f(αLa) + f(βLb)

=αf(La) + βf(Lb)

=αh(a) + βh(b)
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⇒ h is linear and bounded. h is also positive since h(a∗a) = f(L∗
aLa) ≥ 0

Furthermore h is of norm 1 since h(e) = f(Le) = 1 and
1 = |h(e)| ≤ ‖h‖ ‖e‖ ⇒ ‖h‖ ≥ 1. We also have

‖h‖ = sup {|h(a)| : ‖a‖ = 1}
= sup {|f(La)| : ‖La| = 1}
≤ ‖f‖
= 1

Thus h is a state on A ∗ and so V (La;L(A )) ⊆ V (a; A )

2 NORM IDEALS

Let X and Y be Banach algebras. L(X) and L(Y ) , the algebra of all bounded
linear operators on X and Y respectively.
Let (J, ‖.‖J) be a norm ideal on L(Y,X), the algebra of all bounded linear
operator from Y to X such that:

i) (J, ‖.‖J) is a Banach space

ii) IfA ∈ L(X), T ∈ J,B ∈ L(Y ) thenATB ∈ J ,and ‖ATB‖J ≤ ‖A‖ ‖T‖J ‖B‖

iii) ‖T‖ ≤ ‖T‖J , T ∈ Jand

iv) ‖T‖J = ‖T‖ , for T a rank- one operator.

If A ∈ L(X), B ∈ L(Y ) and T ∈ J , then the operators LA, RB and LA − RB

are all bounded linear operators on L(J) , the space of all bounded linear
operators from J to J, where:
LAT = AT , the left multiplication operator,
RBT = TB, the right multiplication operator and
(LA −RB)T = AT −TB, the generalized derivation.The following lemma will
hold.

Lemma 4. V (A : L(X)) = V (LA : L(J))

Proof. Let λ ∈ V (A : L(X)). Then there exist f ∈ L(X)∗ such that
λ = f(A), and, f(IL(X)) = 1 = ‖f‖
Let A0 = {LA : A ∈ L(X), LA(T ) = AT, T ∈ J} ⊆ L(J).
A0 is a linear subspace of L(X) .
On A ∗

0 , define a linear functional g such that g(LA) = f(A). Clearly g as
defined is a state and the Hahn-Banach theorem guarantees the existence of
its extension on L(J). Hence, V (A : L(X)) ⊆ V (LA : L(J))
⇐: suppose λ ∈ V (LA : L(J). Then ∃ f ∈ L(J)∗ such that f(LA) = λ and
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f(IL(J)) = 1 = ‖f‖.
Define a linear operator h on L(X)∗ by h(A) = f(LA). Then h(I) = f(IL(J)) =
1.
h is thus a state on L(X)∗ and V (LA : L(J)) ⊆ V (A : L(X))

3 Norm of LA and R
B

in (J, ‖.‖J)
Lemma 5. ‖LA‖J = ‖A‖

Proof. Condition (ii) above on the definition of a norm ideal implies that LA

and RB are bounded linear operators on (J. ‖.‖J) and

‖LA‖J = Sup {‖AX‖ : ‖X‖J = 1, X ∈ J}
≤ ‖A‖ ‖X‖J
= ‖A‖

Condition (iii) implies ‖LA‖J ≥ ‖A‖.
It therefore follows that ‖LA‖J = ‖A‖
Similarly ‖RB‖J = ‖B‖

4 Numerical range of the generalized deriva-

tion in the norm ideal J

In the past, generalized derivations , their properties and their restrictions to
norm ideals have been investigated by many authors. For example,their spec-
tra have been characterized in [7] and [8]. The famous results on the norms of
inner derivation and the generalized derivation as obtained by Stampfli [6] us-
ing maximal numerical range have ever since provided a crucial lead in defining
of norms of elementary operators.We recall the works of Kyle [9] who examines
the relationship between the numerical range of an inner derivation, and that
of its implementing element.
In his paper, Magajna [2] gives the essential numerical range of the the general-
ized derivation defined on the Hilbert-Schmidt class in terms of the numerical
and the essential numerical ranges of the implementing operators. Shaw [10]
in particular, established that the algebra numerical range of a generalized
derivation restricted to a norm ideal J is equal to the difference of the algebra
numerical ranges of the implementing operators provided that J contains all
finite rank operators and is suitably normed . With slight modification we
obtain an alternative proof to Shaw’s result.

Lemma 6. Let J be as defined above. Then for A ∈ L(X), B ∈ L(Y ), V (∆A,B : L(J)) =
V (A : L(X))− V (B : L(Y ))
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Proof. Let λ ∈ V (∆A,B : L(J)). This implies there exist f ∈ L(J)∗ such that
f(∆A,B) = λ and f

(
IL(J)

)
= 1 = ‖f‖

Let A0 = {LA : A ∈ L(X), LA(T ) = AT, T ∈ J} ⊆ L(J) and
A1 = {RB : B ∈ L(Y ), RB(T ) = TB, T ∈ J} ⊆ L(J) i.e. the set of the left and
right multiplication operators respectively in L(J). These are linear subspaces
of L(X) and L(Y ) respectively.Let also S(L(J)) =

{
f ∈ L(J)∗ : f

(
IL(J)

)
= 1 = ‖f‖

}
λ = f (∆A,B : L(J)) = {f (LA −RB : f ∈ S(L(J)))}

=
{
f(LA) : f ∈ L(X)∗, f(IL(X)) = 1 = ‖f‖

}
−
{
f(RB) : f ∈ L(Y )∗, f(IL(Y )) = 1 = ‖f‖

}
= V (LA : LA ∈ L (J))− V (RB : RB ∈ L (J))

∈ V (A : L(X))− V (B : L(Y ))

To prove the reverse inclusion, we make use of the spatial numerical range.Choose
λ in W (A : L(X)) and µ in W (B : L(Y )). Then we can find functionals f
and g in L(X)∗, L(Y )∗ such that
‖f‖ = ‖x‖ = f (x) = 1, with f(Ax) = λ and
‖g‖ = ‖y‖ = g(y) = 1, with g(By) = µ
Let X be a rank one operator in J such that Xz = g(z)x,∀z ∈ Y ,
Also define F in L(J)∗ by F (T ) = f(Ty), ∀T ∈ L(J)
Then F (X) = f(Xy) = fg(y)x = g(y)f(x) = 1,
F (I) = f(Iy) = fg(y)x = g(y)f(x) = 1 and
|F (T )| ≤ ‖f‖ ‖T‖J ‖Y ‖ = ‖T‖J
Clearly ‖F‖J = ‖X‖J = 1 and

(
IL(J), F

)
∈ L(J)× L(J)∗

Thus,

F (∆A,B(X)) = F (AX −XB)

= f (AX −XB) y

= f(AXy)− f(XBy)

= f(g(y)Ax)− f(g(By)x)

= f(Ax)g(y)− f(x)g(By)

= λ− µ
∈ {W (A : L(X))−W (B : L(Y ))}

Now

V (∆A,B;L(J)) = coW (∆A,B;L(J))

⊇ co {W (A;L(X))−W (B;L(Y ))}
= co {W (A;L(X))} − co {W (B;L(Y ))}
= V (A;L(X))− V (B;L(Y ))
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Thus {V (A;L(X))− V (B;L(Y ))} ⊆ V (∆A,B;L(J))

Acknowledgements. The authors wish to thank National Commission
for Science,Technology and Innovation for the financial support of this research
work

References

[1] A. Seddik, The Numerical Range of Elementary Operators, Integr. Equ.
Oper. Theory, 43 (2002), 248-252. https://doi.org/10.1007/bf01200256

[2] B. Magajna, On the Essential Numerical Range of a Generalized Deriva-
tion, Proc. of the American Mathematical Society, 99 (1987), no. 1, 86-92.
https://doi.org/10.1090/s0002-9939-1987-0866435-1

[3] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed
Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture
Note Series 2, Cambridge, 1971.
https://doi.org/10.1017/cbo9781107359895

[4] F. F. Bonsall, The Numerical Range of an Element of a Normed Algebra,
Glasgow Mathematical Journal, 10 (1968), 68-72.
https://doi.org/10.1017/s0017089500000562

[5] J. Anderson and C. Foias, Properties which Normal Operators Share with
Normal Derivations and Related Operators, Pacific Journal of Mathemat-
ics, 61 (1975), no. 2, 313-325.
https://doi.org/10.2140/pjm.1975.61.313

[6] J.G. Stampfli, The Norm of a Derivation, Pacific J. Math., 33 (1970),
737-747. https://doi.org/10.2140/pjm.1970.33.737

[7] L. A. Fialkow, Elements of spectral theory for generalized derivations, J.
Operator Theory, 3 (1980), 89-113.

[8] L. A. Fialkow, A note on norm ideals and the operator X - AX - XB,
Israel J. Math., 32 (1979), 331-348. https://doi.org/10.1007/bf02760462

[9] J. Kyle, Numerical ranges of derivations, Proc. Edinburgh Math. Soc., 21
(1978), 33-39. https://doi.org/10.1017/s0013091500015856

[10] S.Y. Shaw, On Numerical Ranges of Generalized Derivations and Re-
lated Properties, J. Austral. Math. Soc., (Series A), 36 (1984), 134-142.
https://doi.org/10.1017/s1446788700027397

Received: November 21, 2016; Published: February 3, 2017


